
Indian Journal of Communication Engineering and Systems (IJCES)
Vol.2.No.2 2014 pp 101-106.

Available at: www.goniv.com
Paper Received: 04-04-2014
Paper Accepted: 14-04-2014

Paper Reviewed by: 1. R. Venkatakrishnan 2. R. Marimuthu
Editor: Prof. P.Muthukumar

goniv Publications Page 101

SECURED DATA SHARING IN CLOUD USING DISTRIBUTED
ACCOUNTABILITY

S.Sowmiya
M.Tech (C.S.E)-2Yr,
PRIST University.,
Thanjavur-613 403.

Email:sowmiya.rajanit@gmail.com

R.Muthuvenkatakrishnan
Associate Professor
PRIST University.,
Thanjavur-614303

muthubrillia@gmail.com

ABSTRACT

Cloud computing enables highly scalable services to be easily consumed over the Internet on an as-

needed basis. A major feature of the cloud services is that users’ data are usually processed remotely in
unknown machines that users do not own or operate. While enjoying the convenience brought by this new
emerging technology, users’ fears of losing control of their own data (particularly, financial and health data) can
become a significant barrier to the wide adoption of cloud services. To address this problem, in this paper, we
propose a novel highly decentralized information accountability framework to keep track of the actual usage of
the users’ data in the cloud. In particular, we propose an object-centred approach that enables enclosing our
logging mechanism together with users’ data and policies. We leverage the JAR programmable capabilities to
both create a dynamic and traveling object, and to ensure that any access to users’ data will trigger
authentication and automated logging local to the JARs. To strengthen user’s control, we also provide
distributed auditing mechanisms. We provide extensive experimental studies that demonstrate the efficiency and
effectiveness of the proposed approaches.

Index Terms—Cloud computing, accountability, data sharing.

1. INTRODUCTION

CLOUD computing presents a new way to
supplement the current consumption and delivery
model for IT services based on the Internet, by
providing for dynamically scalable and often
virtualized resources as a service over the Internet. To
date, there are a number of notable commercial and
individual cloud computing services, including
Amazon, Google, Microsoft, Yahoo, and Sales force.
Details of the services provided are abstracted from
the users who no longer need to be experts of
technology infrastructure. Moreover, users may not
know the machines which actually process and host
their data. While enjoying the convenience brought by
this new technology, users also start worrying about
losing control of their own data. The data processed
on clouds are often outsourced, leading to a number of
issues related to accountability, including the handling
of personally identifiable information. Such fears are
becoming a significant barrier to the wide adoption of

cloud services. To allay users’ concerns, it is essential
to provide an effective mechanism for users to
monitor the usage of their data in the cloud. For
example, users need to be able to ensure that their data
are handled according to the service level agreements
made at the time they sign on for services in the cloud.
Conventional access control approaches developed for
closed domains such as databases and operating
systems, or approaches using a centralized server in
distributed environments, are not suitable, due to the
following features characterizing cloud environments.
First, data handling can be outsourced by the direct
cloud service provider (CSP) to other entities in the
cloud and theses entities can also delegate the tasks to
others, and so on. Second, entities are allowed to join
and leave the cloud in a flexible manner. As a result,
data handling in the cloud goes through a complex and
dynamic hierarchical service chain which does not
exist in conventional environments.

Secured Data sharing in Cloud using Distributed Accountability

goniv Publications Page 102

To overcome the above problems, we
propose a novel approach, namely Cloud Information
Accountability (CIA) framework, based on the notion
of information accountability. Unlike privacy
protection technologies which are built on the hide-it-
or-lose-it perspective, information accountability
focuses on keeping the data usage transparent and
track able. One of the main innovative features of the
CIA framework lies in its ability of maintaining
lightweight and powerful accountability that combines
aspects of access control, usage control and
authentication. By means of the CIA, data owners can
track not only whether or not the service-level
agreements are being honored, but also enforce access
and usage control rules as needed. Associated with the
accountability feature, we also develop two distinct
modes for auditing: push mode and pull mode. The
push mode refers to logs being periodically sent to the
data owner or stakeholder while the pull mode refers
to an alternative approach whereby the user (or
another authorized party) can retrieve the logs as
needed. The design of the CIA framework presents
substantial challenges, including uniquely identifying
CSPs, ensuring the reliability of the log, adapting to a
highly decentralized infrastructure, etc.

Our basic approach toward addressing these

issues is to leverage and extend the programmable
capability of JAR (Java ARchives) files to
automatically log the usage of the users’ data by any
entity in the cloud. Users will send their data along
with any policies such as access control policies and
logging policies that they want to enforce, enclosed in
JAR files, to cloud service providers. Any access to
the data will trigger an automated and authenticated
logging mechanism local to the JARs. We refer to this
type of enforcement as “strong binding” since the
policies and the logging mechanism travel with the
data. This strong binding exists even when copies of
the JARs are created; thus, the user will have control
over his data at any location.

Such decentralized logging mechanism meets

the dynamic nature of the cloud but also imposes
challenges on ensuring the integrity of the logging. To
cope with this issue, we provide the JARs with a
central point of contact which forms a link between
them and the user. It records the error correction
information sent by the JARs, which allows it to
monitor the loss of any logs from any of the JARs.

Moreover, if a JAR is not able to contact its

central point, any access to its enclosed data will be
denied. Currently, we focus on image files since
images represent a very common content type for end
users and organizations (as is proven by the popularity
of Flickr) and are increasingly hosted in the cloud as
part of the storage services offered by the utility
computing paradigm featured by cloud computing.
Further, images often reveal social and personal habits

of users, or are used for archiving important files from
organizations. In addition, our approach can handle
personal identifiable information provided they are
stored as image files(they contain an image of any
textual content, for example, the SSN stored as a.jpg
file).

2 RELATED WORK

Conventional access control approaches
developed for closed domains such as databases and
operating systems, or approaches using a centralized
server in distributed environments, are not suitable,
due to the following features characterizing cloud
environments. First, data handling can be outsourced
by the direct Cloud Service Provider to other entities
in the cloud and theses entities can also delegate the
tasks to others, and so on. Second, entities are allowed
to join and leave the cloud in a flexible manner.

That is, even if the data owner is not aware of

the existence of the additional copies of its JAR files,
he will still be able to receive log files from all
existing copies. It is essential to provide an effective
mechanism for users to monitor the usage of their data
in the cloud. An object-cantered approach that disable
enclosing our logging mechanism together with users’
data and policies.

Cloud computing has raised a range of

important privacy and security issues . Such issues are
due to the fact that, in the cloud, users’ data and
applications reside—at least for a certain amount of
time—on the cloud cluster which is owned and
maintained by a third party. Concerns arise since in
the cloud it is not always clear to individuals why their
personal information is requested or how it will be
used or passed on to other parties. To date, little work
has been done in this space, in particular with respect
to accountability.

Their basic idea is that the user’s private data
are sent to the cloud in an encrypted form, and the
processing is done on the encrypted data. The output
of the processing is deobfuscated by the privacy
manager to reveal the correct result. However, the
privacy manager provides only limited features in that
it does not guarantee protection once the data are
being disclosed. In the authors present a layered
architecture for addressing the end-to-end trust
management and accountability problem in federated
systems.

The focus is very different from ours, in that
they mainly leverage trust relationships for
accountability, along with authentication and anomaly
detection. Further, their solution requires third-party
services to complete the monitoring and focuses on
lower level monitoring of system resources.

Secured Data sharing in Cloud using Distributed Accountability

goniv Publications Page 103

Fig.1.Structure of JAR Files

3 PROPOSED DESIGN
To overcome the above problems, Cloud

Information Accountability framework, based on the
notion of information accountability. Unlike privacy
protection technologies which are built on the hide-it-
or lose-it perspective, information accountability
focuses on keeping the data usage transparent and
trackable. The CIA framework provides end-to end
accountability in a highly distributed fashion. One of
the main innovative features of the CIA framework
lies in its ability of maintaining lightweight and
powerful accountability that combines aspects of
access control, usage control and authentication. By
means of the CIA, data owners can track not only
whether or not the service-level agreements are being
honored, but also enforce access and usage control
rules as needed. Associated with the accountability
feature, we also develop two distinct modes for
auditing: push mode and pull mode. The push mode
refers to logs being periodically sent to the data owner
or stakeholder while the pull mode refers to an
alternative approach whereby the user can retrieve the
logs as needed.

Fig.2. System Architectural Design

3.1 Login:
Direct Entry skips the Gateway and Login

pages when users access the URL . When users access
the system through Portal Direct Entry, they are
considered Guests until they log in. The Login Module
is a portal module that allows users to enter a User
Name and Password to log in. This module can be
placed on any Module Tab to allow users to login to
the system. If the Administrator has allows users to
create accounts and enabled Portal Direct Entry, a
Create Account link appears in the Login Module.
3.2 New Register:

Simple registration page with First Name,
Last Name, Email, Password, Address and Mobile
number. The new register module page for user to
amend those details. Aside from the fact that at points
it doesn't actually seem to save anything into the DB
the biggest issue is that neither of them seem to
perform any checks on whether a user already exists.
If someone tries to register using the same email
address as one already registered it seems to just
replace the existing user account.

3.3 Admin Module:

Maintain permanent historical PH records for
customers of products and services. Control the
Scheduling of Training, Resources, Facilities,
Instructors and Students. Design and monitor PHR
Programs for people based on their position, or a
health they need to perform.

3.4 View:

The entity can only read the data but is not
allowed to save a raw copy of it anywhere
permanently. For this type of action, the Pure Log will
simply write a log record about the access, while the
Access Logs will enforce the action through the
enclosed access control module. Recall that the data
are encrypted and stored in the inner jar. When there is
a view-only access request, the inner JAR will decrypt
the data on the fly and create a temporary decrypted
file. The decrypted file will then be displayed to the
entity using the Java application viewer in case the file
is displayed to a human user. Presenting the data in the
Java application, viewer disables the copying
functions using right click or other hot keys such as
Print Screen. Further, to prevent the use of some
screen capture software, the data will be hidden
whenever the application viewer screen is out of
focus.

3.5 Timed access:

This action is combined with the view-only
access, and it indicates that the data are made
available only for a certain period of time. The Pure
log will just record the access starting time and its
duration, while the Access Log will enforce that the
access is allowed only within the specified period of
time.

Secured Data sharing in Cloud using Distributed Accountability

goniv Publications Page 104

3.6 Time Protocol:
To enforce the limit on the duration, the

Access Log records the start time using the ntp, and
then uses a timer to stop the access. Naturally, this
type of access can be enforced only when it is
combined with the View access right and not when it
is combined with the Download.

3.7 Location-based access:

In this case, the Pure Log will record the
location of the entities. The Access Log will verify the
location for each of such access. The access is granted
and the data are made available only to entities located
at locations specified by the data owner.

3.8 Download:

The entity is allowed to save a raw copy of
the data and the entity will have no control over this
copy neither log records regarding access to the copy.
If Pure Log is adopted, the user’s data will be directly
downloadable in a pure form using a link. When an
entity clicks this download link, the JAR file
associated with the data will decrypt the data and give
it to the entity in raw form. In case of Access Logs,
the entire jar file will be given to the Entity.

Algorithm :

1: Let TS(NTP) be the network time protocol
timestamp
2: pull=0
3: rec:=<UID, OID, AccessType, Result,Time,Loc>
4: Curtime:= TS(NTP)
5: lsize:=sizeof(log)//current size of the log
6: if((cutime-
tbeg)<time)&&(lsize<size)&&(pull==0)then
7: log:=log + ENCRYPT(rec)//ENCRYPT is the
encryption function used to encrypt the record
8: PING to CJAR//Send a PING to the harmonizer to
check if it is alive
9: if PING-CJAR then
10: PUSH RS(rec)//write the error correcting bits
11: else
12:EXIT(1)
13: end if
14: end if
15:if ((cutime-tbeg)> time)||(lsize >= size)||(pull=0)
then
16:// check if PING is received
17: if PING-CJAR then
18: PUSH log//write the log file to the harmonizer
19:RS(log):=NULL//reset the error correction records
20:tbeg:=TS(NTP)//reset the tbeg variable
21: pull:= 0
22: else
23:EXIT(1)//error if no PING is received
24:end if
25: end if

The algorithm presents logging and synchronization
steps with the harmonizer in case of PureLog. First,
the algorithm checks whether the size of the JAR has
exceeded a stipulated size or the normal time between
two consecutive dumps has elapsed. The size and time
threshold for a dump are specified by the data owner
at the time of creation of the JAR. The algorithm also
checks whether the data owner has requested a dump
of the log files. If none of these events has occurred, it
proceeds to encrypt the record and write the error-
correction information to the harmonizer.

4 RESULTS AND DISCUSSIONS

In the experiments, we first examine the time
taken to create a log file and then measure the
overhead in the system. With respect to time, the
overhead can occur at three points: during the
authentication, during encryption of a log record, and
during the merging of the logs. Also, with respect to
storage overhead, we notice that our architecture is
very lightweight, in that the only data to be stored are
given by the actual files and the associated logs.
Further, JAR act as a compressor of the files that it
handles. In particular, as introduced in, multiple files
can be handled by the same logger component. To this
extent, we investigate whether a single logger
component, used to handle more than one file, results
in storage overhead.

4.1 Log Creation Time

In the first round of experiments, we are
interested in finding out the time taken to create a log
file when there are entities continuously accessing the
data, causing continuous logging. It is not surprising
to see that the time to create a log file increases
linearly with the size of the log file. Specifically, the
time to create a 100 Kb file is about 114.5 ms while
the time to create a 1 MB file averages at 731 ms.
With this experiment as the baseline, one can decide
the amount of time to be specified between dumps,
keeping other variables like space constraints or
network traffic in mind.

Fig.3. Time to create log files of Different

sizes

4.2 Authentication Time
The next point that the overhead can occur is during
the authentication of a CSP. If the time taken for this

Secured Data sharing in Cloud using Distributed Accountability

goniv Publications Page 105

authentication is too long, it may become a bottleneck
for accessing the enclosed data. To evaluate this, the
head node issued OpenSSL certificates for the
computing nodes and we measured the total time for
the OpenSSL authentication to be completed and the
certificate revocation .Considering one access at the
time, we find that the authentication time averages
around 920 ms which proves that not too much
overhead is added during this phase. As of present, the
authentication takes place each time the CSP needs to
access the data. The performance can be further
improved by caching the certificates. The time for
authenticating an end user is about the same when we
consider only the actions required by the JAR, viz.
obtaining a SAML certificate and then evaluating it.
This is because both the OpenSSL and the SAML
certificates are handled in a similar fashion by the
JAR. When we consider the user actions (i.e.,
submitting his username to the JAR), it averages at
1.2 minutes.

Fig.4. Time to merge log Files

4.3 Time Taken to Perform Logging
This set of experiments studies the effect of

log file size on the logging performance. We measure
the average time taken to grant an access plus the time
to write the corresponding log record. The time for
granting any access to the data items in a JAR file
includes the time to evaluate and enforce the
applicable policies and to locate the requested data
items. In the experiment, we let multiple servers
continuously access the same data JAR file for a
minute and recorded the number of log records
generated. Each access is just a view request and
hence the time for executing the action is negligible.
As a result, the average time to log an action is about
10 seconds, which includes the time taken by a user to
double click the JAR or by a server to run the script to
open the JAR. We also measured the log encryption
time which is about 300 ms (per record) and is
seemingly unrelated from the log size.

4.4 Log Merging Time

To check if the log harmonizer can be a
bottleneck, we measure the amount of time required to
merge log files. In this experiment, we ensured that
each of the log files had 10 to 25 percent of the
records in common with one other.The exact number

of records in common was random for each repetition
of the experiment. The time was averaged over 10
repetitions. We tested the time to merge up to 70 log
files of 100 KB, 300 KB, 500 KB, 700 KB, 900 KB,
and 1 MB each. The results are shown in Fig. 6. We
can observe that the time increases almost linearly to
the number of files and size of files, with the least
time being taken for merging two 100 KB log files at
59 ms, while the time to merge 70 1 MB files was
2.35 minutes.

4.5 Size of the Data JAR Files
Finally, we investigate whether a single logger, used
to handle more than one file, results in storage
overhead. We measure the size of the loggers (JARs)
by varying the number and size of data items held by
them. We tested the increase in size of the logger
containing 10 content files (i.e., images) of the same
size as the file size increases. Intuitively, in case of
larger size of data items held by a logger, the overall
logger also increases in size. The size of logger grows
from 3,500 to 4,035 KB when the size of content
items changes from 200 KB to 1 MB. Overall, due to
the compression provided by JAR files, the size of the
logger is dictated by the size of the largest files it
contains. Notice that we purposely did not include
large log files (less than 5 KB), so as to focus on the
overhead added by having multiple content files in a
single JAR.

4.6 Overhead Added by JVM Integrity Checking

We investigate the overhead added by both
the JRE installation/repair process, and by the time
taken for computation of hash codes. The time taken
for JRE installation/repair averages around 6,500 ms.
This time was measured by taking the system time
stamp at the beginning and end of the
installation/repair. To calculate the time overhead
added by the hash codes, we simply measure the time
taken for each hash calculation. This time is found to
average around 9 ms. The number of hash commands
varies based on the size of the code in the code does
not change with the content, the number of hash
commands remain constant.

Fig 5 Size of the logger component

Secured Data sharing in Cloud using Distributed Accountability

goniv Publications Page 106

5 CONCLUSION
In this paper, we proposed innovative

approaches for automatically logging any access to the
data in the cloud together with an auditing mechanism.
Our approach allows the data owner to not only audit
his content but also enforce strong backend protection
if needed. Moreover, one of the main features of our
work is that it enables the data owner to audit even
those copies of its data that were made without his
knowledge.

ACKNOWLEDGMENTS
The author would like to thank the management and
staff members of the PRIST University for their help
and their thoughtful comments.

REFERENCES
1. P. Ammann and S. Jajodia, (Aug.1993)
“Distributed Timestamp Generation in Planar Lattice
Networks,” ACM Trans. Computer Systems, vol. 11,
pp. 205-225.
2. G. Ateniese, R. Burns, R. Curtmola, J. Herring, L.
Kissner, Z. Peterson, and D.Song, (2007) “Provable
Data Possession at Untrusted Stores,” Proc. ACM
Conf. Computer and Comm. Security, pp. 598-609.
3. E. Barka and A. Lakas, (2008) “Integrating Usage
Control with SIP-Based Communications,” J.
Computer Systems, Networks, and Comm., vol. 2008,
pp.
4. D. Boneh and M.K. Franklin, (2001) “Identity-
Based Encryption from the Weil Pairing,” Proc. Int’l
Cryptology Conf. Advances in Cryptology, pp. 213-
229.
5. R. Bose and J. Frew, (Mar. 2005) “Lineage
Retrieval for Scientific Data Processing: A Survey,”
ACM Computing Surveys, vol. 37, pp. 1- 28.
6. P. Buneman, A. Chapman, and J. Cheney, (2006)
“Provenance Management in Curated Databases,”
Proc. ACM SIGMOD Int’l Conf. Management of Data
(SIGMOD ’06), pp. 539-550.
7. B. Chun and A.C. Bavier, (2004) “Decentralized
Trust Management and
Accountability in Federated Systems,” Proc. Ann.
Hawaii Int’l Conf. System Sciences (HICSS).

